评测语音技能的智能程度之交互流畅
这里有3个细节。 第一个是反馈的行为折损。根据历史数据表现,1个问题被报上来,背后往往有至少10个以上的用户遇见过,只是用户懒/报问题麻烦,没有报而已。 第二个是反馈的信息折损,客服问:你做了什么操作导致的崩溃?用户答:我也不知道,就崩溃了。这种情况,是不利于排查和定位问题的。 第三个是“解决方案的设计”,这里也分为“临时解决方案”和“全局最优解决方案”两说。
下图是一个信息化的风控结构,做过相关模块的,懂得自然懂,篇幅太长,此处不展开。 所以,在考量服务稳定性上有两个大层面,一个是智能助手本身的稳定性表现,二个是在服务用户的过程中,如何规避,以及遇见问题后的业务响应速度表现。 服务稳定性的考量是以一定周期、频次进行考量才是科学合理的。 【交互流畅】(2)响应速度/流畅度 服务稳定性保障了之后,接下来就是速度。 语音交互这件事,本身就是因为语音输入的高效性。 当用户发出了需求,希望尽快拿到反馈,
现在的用户极其没有耐心,速度一旦过慢,注定会被弃而不用。 1、人类唤醒后,计算器的响应灵敏度,灵敏度太强(误唤醒)或太弱(没反应)都不好,当然如果升级下维度,还可以添加场景,比如噪音下唤醒,远场唤醒等。灵敏度是可以调试的,以表现合适最好。 2、人类表述了自己需求后,ASR有两种方案,一种是边识别边转换文本,另外一种是表述完毕后一口气转换为文本。 3、业务逻辑处理表现,其实是NLP领域最为核心的部分,也是最为耗时的部分,从效率角度上而言,此处尽管追求越快越好。 4、这里的语音播放,不是越快越好,而是合适就好,语速太快会给人一种轻浮及不稳重的感受,太慢则显得很笨以及可能造成不耐烦。而反馈样式则需要尽快呈现,有些智能助手语音播放完毕了,结果下面的内容还没加载到位。 5、人类总计2次交互,一次唤醒,一次表达意图,这2个行为过后,等待AI反馈。也就是说,当用户说完话后的下一秒,助手要同时处理,识别+理解+接口查询+反馈四个阶段,这个过程中,全部都是用户的等待状态。
人们去饭店点完了菜,等上菜的过程中,中间服务员还会过来帮忙缓解,这个过程较长,一定要考虑好等待体验管理,不至于让用户无聊。 (编辑:长春站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |